Conservative semi-Lagrangian schemes for Vlasov equations

نویسندگان

  • Nicolas Crouseilles
  • Michel Mehrenberger
  • Eric Sonnendrücker
چکیده

Conservative methods for the numerical solution of the Vlasov equation are developed in the context of the one-dimensional splitting. In the case of constant advection, these methods and the traditional semi-Lagrangian ones are proven to be equivalent, but the conservative methods offer the possibility to add adequate filters in order to ensure the positivity. In the non constant advection case, they present an alternative to the traditional semi-Lagrangian schemes which can suffer from bad mass conservation, in this time splitting setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code

We discuss numerical interpolation schemes used in Vlasov codes. An improved conservative semi-Lagrangian scheme is compared with the latest nonconservative and conservative schemes for a long run-time nonlinear problem of the beam-plasma interaction with respect to the mass and energy conservations.

متن کامل

Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations

We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual sem...

متن کامل

On the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation

The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...

متن کامل

Solving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes

In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...

متن کامل

Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation

Abstract In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010